Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313763, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506567

RESUMO

Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangular S = 3/2 magnet CaMnTeO6 is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6 with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low-temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half-integer spin S = 3/2 CaMnTeO6 magnet, which is rare. By comparing the spin-polarized band structure, chemical bonding, and physical properties of AMnTeO6 (A = Ca, Sr, Pb), how quantum-chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.

3.
Nat Mater ; 23(4): 535-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308087

RESUMO

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.

4.
Inorg Chem ; 62(44): 18179-18188, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37863841

RESUMO

Transition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history.

5.
Nat Mater ; 20(2): 214-221, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33046857

RESUMO

High-entropy (HE) ceramics, by analogy with HE metallic alloys, are an emerging class of solid solutions composed of a large number of species. These materials offer the benefit of large compositional flexibility and can be used in a wide variety of applications, including thermoelectrics, catalysts, superionic conductors and battery electrodes. We show here that the HE concept can lead to very substantial improvements in performance in battery cathodes. Among lithium-ion cathodes, cation-disordered rocksalt (DRX)-type materials are an ideal platform within which to design HE materials because of their demonstrated chemical flexibility. By comparing a group of DRX cathodes containing two, four or six transition metal (TM) species, we show that short-range order systematically decreases, whereas energy density and rate capability systematically increase, as more TM cation species are mixed together, despite the total metal content remaining fixed. A DRX cathode with six TM species achieves 307 mAh g-1 (955 Wh kg-1) at a low rate (20 mA g-1), and retains more than 170 mAh g-1 when cycling at a high rate of 2,000 mA g-1. To facilitate further design in this HE DRX space, we also present a compatibility analysis of 23 different TM ions, and successfully synthesize a phase-pure HE DRX compound containing 12 TM species as a proof of concept.

6.
Nature ; 566(7744): 363-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728501

RESUMO

Symmetry and topology are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pseudospin symmetry whose wavefunctions also have topological properties1,2. Domain walls between distinct broken-symmetry QHFM phases are predicted to host gapless one-dimensional modes-that is, quantum channels that emerge because of a topological change in the underlying electronic wavefunctions at such interfaces. Although various QHFMs have been identified in different materials3-8, interacting electronic modes at these domain walls have not been probed. Here we use a scanning tunnelling microscope to directly visualize the spontaneous formation of boundary modes at domain walls between QHFM phases with different valley polarization (that is, the occupation of equal-energy but quantum mechanically distinct valleys in the electronic structure) on the surface of bismuth. Spectroscopy shows that these modes occur within a topological energy gap, which closes and reopens as the valley polarization switches across the domain wall. By changing the valley flavour and the number of modes at the domain wall, we can realize different regimes in which the valley-polarized channels are either metallic or develop a spectroscopic gap. This behaviour is a consequence of Coulomb interactions constrained by the valley flavour, which determines whether electrons in the topological modes can backscatter, making these channels a unique class of interacting one-dimensional quantum wires. QHFM domain walls can be realized in different classes of two-dimensional materials, providing the opportunity to explore a rich phase space of interactions in these quantum wires.

7.
Nat Commun ; 10(1): 592, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723202

RESUMO

Structure plays a vital role in determining materials properties. In lithium ion cathode materials, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining lithium ion diffusion kinetics. In most conventional cathode materials that are well-ordered, the average structure as seen in diffraction dictates the lithium ion diffusion pathways. Here, we show that this is not the case in a class of recently discovered high-capacity lithium-excess rocksalts. An average structure picture is no longer satisfactory to understand the performance of such disordered materials. Cation short-range order, hidden in diffraction, is not only ubiquitous in these long-range disordered materials, but fully controls the local and macroscopic environments for lithium ion transport. Our discovery identifies a crucial property that has previously been overlooked and provides guidelines for designing and engineering cation-disordered cathode materials.

8.
Chemistry ; 25(8): 2082-2088, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30623498

RESUMO

We describe the previously unreported oxygen excess hexagonal antimony tungsten bronze is reported, with a composition of Sb0.5 W3 O10 , in the following denoted as h-Sbx WO3+2x with x=0.167, to demonstrate its analogy to classical Ax WO3 tungsten bronzes. This compound forms in a relatively narrow temperature range between 580 °C

9.
J Phys Condens Matter ; 29(47): 475602, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28972502

RESUMO

The electronic properties of the heavy metal superconductor [Formula: see text] are reported. The estimated superconducting parameters obtained from physical properties measurements indicate that [Formula: see text] is a BCS-type superconductor. Electronic band structure calculations show that Ir d-states dominate the Fermi level. A comparison of electronic band structures of [Formula: see text] and [Formula: see text] shows that the Ir-compound has a strong spin-orbit-coupling effect, which creates a complex Fermi surface.

10.
Nature ; 546(7657): 265-269, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28445468

RESUMO

The realization of long-range ferromagnetic order in two-dimensional van der Waals crystals, combined with their rich electronic and optical properties, could lead to new magnetic, magnetoelectric and magneto-optic applications. In two-dimensional systems, the long-range magnetic order is strongly suppressed by thermal fluctuations, according to the Mermin-Wagner theorem; however, these thermal fluctuations can be counteracted by magnetic anisotropy. Previous efforts, based on defect and composition engineering, or the proximity effect, introduced magnetic responses only locally or extrinsically. Here we report intrinsic long-range ferromagnetic order in pristine Cr2Ge2Te6 atomic layers, as revealed by scanning magneto-optic Kerr microscopy. In this magnetically soft, two-dimensional van der Waals ferromagnet, we achieve unprecedented control of the transition temperature (between ferromagnetic and paramagnetic states) using very small fields (smaller than 0.3 tesla). This result is in contrast to the insensitivity of the transition temperature to magnetic fields in the three-dimensional regime. We found that the small applied field leads to an effective anisotropy that is much greater than the near-zero magnetocrystalline anisotropy, opening up a large spin-wave excitation gap. We explain the observed phenomenon using renormalized spin-wave theory and conclude that the unusual field dependence of the transition temperature is a hallmark of soft, two-dimensional ferromagnetic van der Waals crystals. Cr2Ge2Te6 is a nearly ideal two-dimensional Heisenberg ferromagnet and so will be useful for studying fundamental spin behaviours, opening the door to exploring new applications such as ultra-compact spintronics.

11.
J Am Chem Soc ; 139(7): 2771-2777, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28125219

RESUMO

Two-dimensional materials have significant potential for the development of new devices. Here we report the electronic and structural properties of ß-GeSe, a previously unreported polymorph of GeSe, with a unique crystal structure that displays strong two-dimensional structural features. ß-GeSe is made at high pressure and temperature and is stable under ambient conditions. We compare it to its structural and electronic relatives α-GeSe and black phosphorus. The ß form of GeSe displays a boat conformation for its Ge-Se six-membered ring ("six-ring"), while the previously known α form and black phosphorus display the more common chair conformation for their six-rings. Electronic structure calculations indicate that ß-GeSe is a semiconductor, with an approximate bulk band gap of Δ ≈ 0.5 eV, and, in its monolayer form, Δ ≈ 0.9 eV. These values fall between those of α-GeSe and black phosphorus, making ß-GeSe a promising candidate for future applications. The resistivity of our ß-GeSe crystals measured in-plane is on the order of ρ ≈ 1 Ω·cm, while being essentially temperature independent.

12.
Science ; 354(6310): 316-321, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27846563

RESUMO

Nematic quantum fluids with wave functions that break the underlying crystalline symmetry can form in interacting electronic systems. We examined the quantum Hall states that arise in high magnetic fields from anisotropic hole pockets on the Bi(111) surface. Spectroscopy performed with a scanning tunneling microscope showed that a combination of single-particle effects and many-body Coulomb interactions lift the six-fold Landau level (LL) degeneracy to form three valley-polarized quantum Hall states. We imaged the resulting anisotropic LL wave functions and found that they have a different orientation for each broken-symmetry state. The wave functions correspond to those expected from pairs of hole valleys and provide a direct spatial signature of a nematic electronic phase.

13.
Nat Commun ; 7: 11456, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118032

RESUMO

A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

14.
Phys Rev Lett ; 114(25): 256401, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197136

RESUMO

A three-dimensional strong-topological insulator or semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi(4)Se(3). Angle-resolved photoemission spectroscopy and ab initio calculations reveal partial gapping of surface bands on the Bi(2)Se(3) termination of Bi(4)Se(3)(111), where an 85 meV gap along Γ̅K̅ closes to zero toward the mirror-invariant Γ̅M̅ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin helicity.

15.
Inorg Chem ; 52(23): 13605-11, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24228799

RESUMO

We present the structure and magnetic properties of Na3Ni2BiO6, which is an ordered variant of the α-NaFeO2 structure type. This layered compound has a 2:1 ordering of (Ni(2+)/Bi(5+))O6 octahedra within the a-b plane and sodium in octahedra between the layers. The structure is presented in the space group C2/m, determined through a combination of single crystal X-ray, powder neutron, and powder X-ray diffraction. Temperature dependent magnetic susceptibility measurements show Na3Ni2BiO6 to display long-range antiferromagnetic ordering below 11 K, despite the dominance of ferromagnetic interactions above TN as indicated by a positive Weiss constant. Heat capacity measurements and low-temperature neutron diffraction support the magnetic ordering and are consistent with a TN of 10.4 K. A magnetic phase can be refined with (010) antiferromagnetic ordering along the b-axis in the honeycomb layer and moments aligned parallel to c. The compounds Na3Mg2BiO6 and Na3Zn2BiO6, synthesized as nonmagnetic analogues of Na3Ni2BiO6, are briefly described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...